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The resonant scattering of topographically trapped, low-mode progressive edge waves
by longshore periodic topography is investigated using a multiple-scale expansion of
the linear shallow water equations. Coupled evolution equations for the slowly vary-
ing amplitudes of incident and scattered edge waves are derived for small-amplitude,
periodic depth perturbations superposed on a plane beach. In ‘single-wave scattering’,
an incident edge wave is resonantly scattered into a single additional progressive
edge wave having the same or different mode number (i.e. longshore wavenumber),
and propagating in the same or opposite direction (forward and backward scattering,
respectively), as the incident edge wave. Backscattering into the same mode num-
ber as the incident edge wave, the analogue of Bragg scattering of surface waves,
is a special case. In ‘multi-wave scattering’, simultaneous forward and backward
resonant scattering results in several (rather than only one) new progressive edge
waves. Analytic solutions are obtained for single-wave scattering and for a special
case of multi-wave scattering involving mode-0 and mode-1 edge waves, over per-
turbed depth regions of both finite and semi-infinite longshore extent. In single-wave
backscattering with small (subcritical) detuning (i.e. departure from exact resonance),
the incident and backscattered wave amplitudes both decay exponentially with prop-
agation distance over the periodic bathymetry, whereas with large (supercritical)
detuning the amplitudes oscillate with distance. In single-wave forward scattering, the
wave amplitudes are oscillatory regardless of the magnitude of the detuning. Multi-
wave solutions combine aspects of single-wave backward and forward scattering. In
both single- and multi-wave scattering, the exponential decay rates and oscillatory
wavenumbers of the edge wave amplitudes depend on the detuning. The results sug-
gest that naturally occurring rhythmic features such as beach cusps and crescentic
bars are sometimes of large enough amplitude to scatter a significant amount of
incident low-mode edge wave energy in a relatively short distance (O(10) topographic
wavelengths).

1. Introduction
Several recent studies concern surface water wave propagation over topography

that varies periodically about a constant mean depth. A wave normally incident on
a patch of periodically spaced bars on the sea floor can be strongly backscattered
(i.e. reflected) if the bar wavelength is half that of the wave (i.e. Bragg reflection).
The backscattered wave has the same frequency and wavenumber as the incident
wave, but propagates in the opposite direction. Measured reflected wave amplitudes
at resonance (Heathershaw 1982) agree well with predictions of a multiple-scale-based
theory valid near and at resonance (Mei 1985). Mei (1985) stressed the role of the
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critical (or ‘cutoff’) detuning frequency, determined by the incident wave dispersion
relation and the bar geometry. Backscattering is qualitatively different when the
detuning frequency (the difference between the wave frequency and the frequency
for exact Bragg resonance) is above or below the critical detuning frequency. When
the detuning frequency is small (subcritical), the backscatter from successive bars
is strongly constructive. The amplitudes of the incident and backscattered waves
both decay exponentially with propagation distance over the bars, and the incident
energy is strongly reflected from the region of rhythmic bottom perturbations. On the
other hand, when the detuning frequency is large (supercritical), waves backscattered
from successive bars drift in and out phase. The incident and backscattered wave
amplitudes oscillate over the bar region, and reflection from the undulating region is
incomplete. Additional studies concern other aspects of Bragg scattering (Guazzelli,
Rey & Belzons 1992; Mei & Liu 1993; Liu & Cho 1993; Rey, Guazzelli & Mei 1996;
and references therein).

Fewer studies have considered the effect of rhythmic beach topography on edge
wave propagation. Edge waves are longshore periodic surface gravity waves that
are refractively trapped near the shoreline, where sinuous morphologies such as
beach cusps and crescentic bars are sometimes well developed. Cusps and crescentic
bars on ocean beaches have longshore wavelengths of O(10–50) m and O(100–500)
m, respectively, comparable to those of subharmonic and infragravity edge waves,
respectively. Guza & Bowen (1981) showed that beach cusps alter the dispersion
relation of standing edge waves with half the cusp wavenumber, and that this alter-
ation may have a negative feedback to the nonlinear excitation of subharmonic edge
waves. However, to our knowledge there are no studies concerning the propagation
of progressive edge waves over longshore periodic bathymetries, even though pro-
gressive edge waves are more commonly observed than standing edge waves (Munk,
Snodgrass & Gilbert 1964; Huntley, Guza & Thornton 1981; Oltman-Shay & Guza
1987).

A theory for the resonant scattering of linear progressive low-mode edge waves by
small-amplitude longshore periodic perturbations about a plane beach is developed
below, using an approach similar to that used by Mei (1985) to study Bragg scatter-
ing of surface waves. In ‘single-wave scattering’, an incident edge wave propagating
over periodic topography is resonantly scattered into a single additional progressive
edge wave with the same or different mode number (i.e. longshore wavenumber),
and propagating in the same or opposite direction (forward and backward scat-
tering, respectively), as the incident edge wave. Backscattering into an edge wave
with the same mode number as the incident edge wave, the analogue of Bragg
scattering of surface waves in constant mean depth, is a special case of single-wave
backward scattering. In ‘multi-wave scattering’, simultaneous forward and backward
resonant scattering results in several (rather than only one) new progressive edge
waves.

The paper is organized as follows. In §2 evolution equations for the amplitudes of
the incident and resonantly scattered edge waves are derived for single-wave scattering
and for a special case of multi-wave scattering involving mode-0 and mode-1 edge
waves. General properties of the solutions are discussed in §3. In §4, results are given
for scattering by periodic topographic perturbations roughly resembling observed
beach cusps and crescentic sandbars. These depth perturbations are predicted to
scatter significant incident progressive edge wave energy, over a considerable frequency
bandwidth, within the relatively short distance of O(10) topographic wavelengths. A
discussion and a summary are given in §5 and §6, respectively.
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2. Evolution equations for edge wave amplitudes
Small-amplitude, low-mode edge waves are governed by the linearized shallow

water equation

−ηtt + (ghηx)x + (ghηy)y = 0, (2.1)

where η is the free surface displacement, h is the water depth, g is the gravitational
acceleration, x and y are the offshore and longshore coordinates, and subscripted
variables indicate partial derivatives. The nearshore topography is assumed planar
with slope s, plus a small longshore periodic perturbation h1 (e.g. beach cusps and
crescentic bars)

h = h0(x) + h1(x, y) = sx+ h1(x, y). (2.2)

Substitution of (2.2) into (2.1) yields

−ηtt + (gh0ηx)x + (gh0ηy)y = −(gh1ηx)x − (gh1ηy)y. (2.3)

Using the period and wavelength of the incident edge wave as time and space scales,
the ratio of terms on the right-hand side of (2.3) to terms on the left-hand side is
O(|∇h1|/s) = ε, and it is assumed that ε� 1. Although higher-order, these right-hand-
side terms can cause cumulatively large scattering over many topographic wavelengths
if the longshore periodicity of h1 satisfies a resonance condition.

To consider the scattering of a mode-n edge wave propagating in the positive y-
direction with (positive) wavenumber kn and frequency ω over an undulating beach,
introduce the slow variables T = εt, Y = εy, and the multiple-scale expansion

η = η0(t, x, y, T , Y ) + εη1(t, x, y, T , Y ) + O(ε2). (2.4)

The slope of the unperturbed plane beach is allowed to vary slowly in the longshore
direction for generality, i.e. s = s(Y ). Note that although the slope variation is small
over a typical wavelength, it may be large over a long distance. The wavenumber
kt and cross-shore structure of the depth perturbation h1 may also vary slowly
alongshore

h1 = c0(x, Y ) +
[
c1(x, Y )ei

∫ y
ktdy + ∗

]
, (2.5)

where ∗ denotes complex conjugate. The c0(x, Y ) term corresponds to a depth profile
perturbation that is not oscillatory in y.

Substituting (2.4) into (2.3) and replacing h1 with εh1 yields equations at O(ε0)

−η0tt + (gh0η0x)x + gh0η0yy = 0, (2.6)

and at O(ε)

−η1tt + (gh0η1x)x + gh0η1yy

= 2η0tT − g (h0η0Y )y − g
(
h0η0y

)
Y
− (gh1η0x)x − (gh1η0y)y. (2.7)

The wavenumber of the perturbed depth kt (2.5) is assumed to satisfy the resonance
condition

kt = kn − km, (2.8)

where the wavenumbers kn and km of mode-n and mode-m edge waves satisfy the
lowest-order edge wave dispersion relation

ω2 = gs(2n+ 1)kn = gs(2m+ 1)|km|. (2.9)

The shallow water assumption requires (2N + 1)s small, where N is the maximum
mode number considered.
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2.1. Single-wave scattering

Anticipating that interaction between the perturbed bathymetry and the incident edge
wave of mode n resonantly excites only a mode-m edge wave, write the O(ε0) solution
as

η0 = 1
2
A0(T , Y )ϕn(x, Y )eiRn + 1

2
B0(T , Y )ϕm(x, Y )eiRm + ∗, (2.10)

Rn =

∫ y

kn(Y )dy − ωt, Rm =

∫ y

km(Y )dy − ωt, (2.11)

where Rn and Rm are the phase of mode-n and mode-m edge waves, respectively, and

ϕn(x, Y ) = Ln(2knx)e−knx, ϕm(x, Y ) = Lm(2|km|x)e−|km|x, (2.12)

with Lj(χ) the Laguerre polynomials of order j. By convention, the wavenumber km of
the scattered edge wave is positive for forward scattering and negative for backward
scattering.

The amplitudes A0 and B0 in (2.10), unknown functions of slow variables T and Y ,
are determined from solvability conditions at O(ε). Substituting the O(ε) free surface
displacement η1

η1 = 1
2
A1(x, T , Y )eiRn + 1

2
B1(x, T , Y )eiRm

+ 1
2
C1(x, T , Y )ei(2Rn−Rm) + 1

2
D1(x, T , Y )ei(2Rm−Rn) + ∗, (2.13)

and (2.10) into (2.7), and using the single-wave scattering assumption that only terms
with phases Rn and Rm are resonant, yields equations for A1 and B1:

(ω2 − gh0k
2
n)A1 + (gh0A1x)x = −2iωϕnA0T − 2igh0kn (ϕnA0)Y

− g[(c0ϕnx)x − k2
nc0ϕn]A0 − g [(c1ϕmx)x − kmknc1ϕm]B0, (2.14a)

and

(ω2 − gh0k
2
m)B1 + (gh0B1x)x = −2iωϕmB0T − 2igh0km (ϕmB0)Y
− g[(c0ϕmx)x − k2

mc0ϕm]B0 − g
[
(c∗1ϕnx)x − knkmc∗1ϕn

]
A0. (2.14b)

The single-wave scattering assumption implies that waves with phase 2Rn − Rm and
2Rm −Rn in (2.13) are not free, i.e. neither (ω, 2kn − km) nor (ω, 2km − kn) satisfies the
dispersion relation (2.9) for any mode number.

Because ϕn and ϕm (2.12) are homogeneous solutions of (2.14a) and (2.14b),
respectively, solvability conditions for A1 (2.14a) and B1 (2.14b) require∫ +∞

0

[RHS of (2.14a)]ϕndx = 0,

∫ +∞

0

[RHS of (2.14b)]ϕmdx = 0. (2.15)

Straightforward algebra using orthogonality and recurrence relations for Lj(χ) yields

A0T +
(
CgnA0

)
Y

= i
[
αnCgnA0 + β±nmCgmB0

]
, (2.16a)

B0T ±
(
CgmB0

)
Y

= i
[
αmCgmB0 + (β±nm)∗CgnA0

]
, (2.16b)

where

Cgn = dω/dkn = ω/2kn, Cgm = dω/d|km| = ω/2|km|, (2.17)
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are the group velocity for mode-n and mode-m edge waves, + and − signs correspond
to forward and backward scattering, respectively, and

αj(Y ) =
g

2C2
gj

∫ +∞

0

[
(c0ϕjx)x − k2

j c0ϕj
]
ϕjdx (j = n, m), (2.18)

β±nm(Y ) =
g

2CgmCgn

{
c1|x=0

ω2

gs
−
∫ +∞

0

c1

[
ϕmxϕnx ± |km|knϕmϕn

]
dx

}
. (2.19)

The first term on the right-hand sides of (2.16a) and (2.16b) is associated with changes
in the edge wave dispersion relation (2.9) owing to the perturbation c0 of the mean
(y-averaged) depth profile (see (2.18) and (2.5)). The second term on the right-hand
sides couples the incident and scattered wave amplitudes (A0 and B0). The coupling
coefficient β±nm (2.19) has dimension of a wavenumber, and depends on the cross-
shore structure c1 of the longshore periodic depth perturbation with wavenumber kt
satisfying the resonance condition (2.8). Note that the coupling coefficient (2.19) is
symmetric with respect to the incident edge wave mode number n and scattered wave
mode number m, i.e. β±nm = β±mn. When n = m, β−nn is the coupling coefficient for the
Bragg-like backscattering of mode-n edge waves.

It follows from (2.16) that(
Cgn|A0|2 + Cgm|B0|2

)
T

+
(
C2
gn|A0|2 ± C2

gm|B0|2
)
Y

= 0, (2.20)

which can be recast into

(En + Em)T +
(
CgnEn ± CgmEm

)
Y

= 0, (2.21)

where

En = ρg|A0|2/4kn, Em = ρg|B0|2/4|km| (2.22)

are the edge wave energies (per unit longshore length) for mode n and m. Thus, the
total edge wave energy is conserved during single-wave scattering.

2.2. Multi-wave scattering

The single-wave scattering assumption, that the interaction of the incident and scat-
tered waves with the topography will not excite additional free edge waves, is not
always satisfied. For example, consider the case where periodic bathymetry (wavenum-
ber kt = kn − km = 2ω2/3gs) forward scatters a mode-0 incident wave (kn = ω2/gs)
into a mode-1 wave (km = ω2/3gs). Note that the forward scattered mode-1 wave
(kn = ω2/3gs) is backscattered by the same bathymetry into an oppositely propa-
gating mode-1 wave (km = −ω2/3gs). Thus, the forward scattering between mode-0
and mode-1, and the Bragg-like backscattering of mode 1, occur simultaneously and
cannot be considered independently. The multi-wave scattering in this case eventually
involves four different wave components: mode-0 and mode-1 edge waves propagat-
ing in both directions. Single-wave scattering solutions also do not apply to forward
scattering of the mode pair (1, 2), nor to forward scattering of the mode pair (1, 3).
With (1, 2) forward scattering the final multi-wave state involves six waves: mode 1,
2, and 7 propagating in both directions. With (1, 3) forward scattering the final state
consists of three waves: mode 1 and 3 propagating in the +y-direction, and mode 10
in the −y-direction. For brevity, the only multi-wave scattering case considered here
involves mode-0 and mode-1 edge waves. The analysis can readily be extended to
other multi-wave scattering cases involving a high-mode edge wave, but the beach and
depth perturbation slopes must then be very small for the shallow water equations to
remain valid.
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The O(ε0) multi-wave scattering solution involving mode-0 and mode-1 edge waves
is

η0 = 1
2
ϕ0(x, Y )

[
A+

0 (T , Y )ei
∫ y
k0dy−iωt + A−0 (T , Y )e−i

∫ y
k0dy−iωt

]
+ 1

2
ϕ1(x, Y )

[
B+

0 (T , Y )ei
∫ y
k1dy−iωt + B−0 (T , Y )e−i

∫ y
k1dy−iωt

]
+ ∗, (2.23)

with the topographic wavenumber kt = k0 − k1 = 2k1. Solvability conditions at O(ε)
again yield evolution equations for the lowest-order edge wave amplitudes:

A+
0T + (Cg0A

+
0 )Y = i

[
α0Cg0A

+
0 + β+

01Cg1B
+
0

]
, (2.24a)

A−0T − (Cg0A
−
0 )Y = i

[
α0Cg0A

−
0 + (β+

01)
∗Cg1B

−
0

]
, (2.24b)

B+
0T + (Cg1B

+
0 )Y = i

[
α1Cg1B

+
0 + (β+

01)
∗Cg0A

+
0 + β−11Cg1B

−
0

]
, (2.24c)

B−0T − (Cg1B
−
0 )Y = i

[
α1Cg1B

−
0 + β+

01Cg0A
−
0 + (β−11)

∗Cg1B
+
0

]
. (2.24d)

Note that coupling occurs between one mode-0 and one mode-1 edge wave propagat-
ing in the same direction (positive or negative y-direction) with coupling coefficient
β+

01, and between two mode-1 edge waves (propagating in opposite directions) with
coupling coefficient β−11. No direct coupling occurs between two mode-0 edge waves
(i.e. β−00 does not appear in the equations). From (2.24), the total edge wave energy is
again conserved,[

E+
0 + E−0 + E+

1 + E−1
]
T

+
[
Cg0

(
E+

0 − E−0
)

+ Cg1

(
E+

1 − E−1
)]
Y

= 0, (2.25)

where

E±0 = ρg|A±0 |2/4k0, E±1 = ρg|B±0 |2/4k1. (2.26)

3. Solutions for scattered and transmitted wave fields
Assume for simplicity that the slope s of the unperturbed beach is constant (the

effect of slow alongshore variation s(Y ) is discussed in Appendix A), and also that
c0 and c1 in the bathymetric perturbation (2.5) are independent of the slow variable
Y . The resulting constant-coefficient equations for single-wave (2.16) and multi-wave
(2.24) scattering can be solved analytically. The incident edge wave with amplitude
a0 is allowed a slight frequency detuning εΩ from the resonant frequency ω and
a corresponding wavenumber detuning εΩ/Cgn from the resonant wavenumber kn,
where Ω/ω is of order unity. Detuned solutions are used in §4 to determine the
frequency range of incident edge waves that are strongly scattered by periodic beach
cusps and crescentic bars.

3.1. Single-wave backward scattering

3.1.1. Over a finite region

Edge waves backscattered by a finite-length longshore topographic perturbation
spanning 0 6 Y 6 L must have zero amplitude on the transmitted side, i.e.

B0 = 0, Y > L. (3.1)
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Over the undulating region, the scattered and transmitted wave amplitudes are gov-
erned by (2.16) with − sign. With

A0 = a0T (Y )ei[(αn−αm+Ω/Cgn−Ω/Cgm)Y /2−ΩT ], 0 6 Y 6 L, (3.2a)

B0 = a0(Cgn/Cgm)S(Y )ei[(αn−αm+Ω/Cgn−Ω/Cgm)Y /2−ΩT ], 0 6 Y 6 L, (3.2b)

the wave fields on the incident (Y 6 0) and transmitted sides (Y > L) of the
undulating region are

A0 = a0e
iΩ(Y /Cgn−T ), B0 = a0(Cgn/Cgm)S(0)eiΩ(−Y /Cgm−T ), Y 6 0, (3.3)

and

A0 = a0T (L)ei(αn−αm+Ω/Cgn−Ω/Cgm)L/2eiΩ[(Y−L)/Cgn−T ], B0 = 0, Y > L. (3.4)

Continuity conditions for A0 and B0 at Y = 0 and Y = L are satisfied if T (0) = 1 and
S(L) = 0, respectively. The solutions for T (Y ) and S(Y ) are exponential or oscillatory,
depending on whether the magnitude of the total effective detuning wavenumber

K =
(
αn + αm + Ω/Cgn + Ω/Cgm

)
/2 (3.5)

is less or greater than the coupling coefficient |β−nm| (2.19). The coupling coefficient
|β−nm| is thus the critical (or cutoff) detuning wavenumber. Note that the total effective
detuning wavenumber K is the sum of the averaged (over the incident and scattered
waves) detuning corresponding to the frequency detuning in the incident wave Ω and
the averaged detuning caused by small changes in the dispersion relation associated
with perturbation of the mean (y-averaged) bathymetry (the α terms in (3.5) depend
on c0, see (2.18) and (2.5)).

The squared scattering and transmission coefficients, defined as the ratio of the
scattered and incident wave energy fluxes to the incident wave flux at the upwave
edge of the perturbed region Y = 0, respectively, are |S(Y )|2 and |T (Y )|2 according
to (3.2a) and (3.2b). Energy conservation (from (2.20)) yields

|T (Y )|2 − |S(Y )|2 = 1− |S(0)|2 > 0. (3.6)

Maxima of the scattered and transmitted wave amplitudes therefore occur at the
same Y location (so do the minima), and |T (L)|2 + |S(0)|2 = 1.

Case (i): K2 < |β−nm|2 (subcritical detuning)

When the magnitude of the effective detuning wavenumber is below cutoff, solutions
for T (Y ) and S(Y ) ((3.2a) and (3.2b)) over the undulating region 0 6 Y 6 L are

T (Y ) =
Q coshQ(L− Y )− iK sinhQ(L− Y )

Q coshQL− iK sinhQL
, (3.7a)

S(Y ) =
i(β−nm)∗ sinhQ(L− Y )

Q coshQL− iK sinhQL
, (3.7b)

where

Q =
[
|β−nm|2 −K2

]1/2
> 0. (3.8)

The squared scattering coefficient over the corrugated region

|S(Y )|2 =
sinh2

[
|β−nm|L

(
1−K2/|β−nm|2

)1/2
(1− Y /L)

]
cosh2

[
|β−nm|L

(
1−K2/|β−nm|2

)1/2
]
−K2/|β−nm|2

, (3.9)
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Figure 1. Spatial variation of the squared backward scattering coefficient |S |2 over the undulating
region for different region lengths |β−nm|L = 1, 5, and 10 (as indicated in the figure), when the
magnitude of the effective detuning wavenumber is below or at cutoff |β−nm|: - - -, K2/|β−nm|2 = 0;
· · · ·, K2/|β−nm|2 = 0.5; ——, K2/|β−nm|2 = 1.

depends on both K2/|β−nm|2 and |β−nm|L, the normalized detuning wavenumber and
the normalized length of the undulating region, respectively. |S(Y )|2 is maximum at
Y = 0 and decays exponentially with increasing Y (see broken lines in figure 1).
The transmission coefficient |T (Y )|2 also decays exponentially over the undulating
region (see (3.6)). Backscattering from the perturbed region is nearly complete (i.e.
|S(0)| ≈ 1) if the undulating region is sufficiently long. When K = 0 (perfect tuning),
backscatter (i.e. |S(0)|) is maximized for a given |β−nm|L (figures 1 and 3), and (3.7)
reduces to

T (Y ) =
cosh |β−nm|(L− Y )

cosh |β−nm|L
, S(Y ) =

i(β−nm)∗ sinh |β−nm|(L− Y )

|β−nm| cosh |β−nm|L
. (3.10)

Case (ii): K2 = |β−nm|2 (critical detuning)

When the magnitude of the effective detuning wavenumber equals the cutoff,

T (Y ) =
1− iK(L− Y )

1− iKL
, S(Y ) =

i(β−nm)∗(L− Y )

1− iKL
, (3.11)

for 0 6 Y 6 L. The squared scattering coefficient

|S(Y )|2 = (|β−nm|L)2(1− Y /L)2/[1 + (|β−nm|L)2], (3.12)

monotonically decreases from (|β−nm|L)2/
[
1 + (|β−nm|L)2

]
to 0 as Y increases from 0 to

L (see solid lines in figure 1).

Case (iii): K2 > |β−nm|2 (supercritical detuning)

When the effective detuning wavenumber magnitude is above cutoff,

T (Y ) =
P cosP (L− Y )− iK sinP (L− Y )

P cosPL− iK sinPL
, (3.13a)

S(Y ) =
i(β−nm)∗ sinP (L− Y )

P cosPL− iK sinPL
, (3.13b)
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Figure 2. Spatial variation of |S |2 over the undulating region when the magnitude of the effective
detuning wavenumber is above cutoff (here K2/|β−nm|2 = 1.25) for different region lengths |β−nm|L:
· · · ·, 1; − · −, 5; - - -, 10; ——, 4π.

for 0 6 Y 6 L, where

P =
[
K2 − |β−nm|2

]1/2
> 0. (3.14)

The scattering and transmission coefficients |S(Y )| and |T (Y )| are oscillatory over
0 6 Y 6 L, and

|S(Y )|2 =
sin2

[
|β−nm|L

(
K2/|β−nm|2 − 1

)1/2
(1− Y /L)

]
K2/|β−nm|2 − cos2

[
|β−nm|L

(
K2/|β−nm|2 − 1

)1/2
] (3.15)

depends on the detuning K2/|β−nm|2 and the length of the perturbed region |β−nm|L,
as in the subcritical detuning case. The spatial variation of the squared scatter-
ing coefficient over the undulating region for different values of |β−nm|L with fixed
K2/|β−nm|2 = 1.25 is shown in figure 2. The maximum backscattering coefficient at
Y = 0, max|β−nm|L>0 {|S(0)|} = |β−nm|/K , achieved when |β−nm|L = (l − 1/2)π(
K2/|β−nm|2 − 1

)−1/2
(l = 1, 2, . . .), is always less than 1.

However, the scattering coefficient can exceed 1 inside the undulating region (fig-
ure 2). For a given K2/|β−nm|2, when

|β−nm|L = lπ
(
K2/|β−nm|2 − 1

)−1/2
, l = 1, 2, . . . , (3.16)

and at locations Yj/L = 1 − (j − 1/2)/l (j = 1, 2, . . . , l), the denominator of (3.15)
reaches its minimum (K2/|β−nm|2 − 1), while the numerator reaches its maximum 1.
The scattering coefficient at these locations

|S(Yj)| =
(
K2/|β−nm|2 − 1

)−1/2
, (3.17)

is the maximum scattering coefficient (for a fixed K2/|β−nm|2) over the entire undulating
region for any length L (the solid line in figure 2 corresponds to l = 2 in (3.16)).
The maximum scattering coefficient (3.17) exceeds 1 when 1 < K2/|β−nm|2 < 2, and
is unbounded as K2/|β−nm|2 → 1 (the length of the corrugated region L (3.16) also is
unbounded in this limit). Note that condition (3.16) implies |S(0)| = 0 (i.e. perfect
transmission), and consequently |T (Y )|2 = 1 + |S(Y )|2 according to (3.6). When
the maximum squared scattering coefficient exceeds 1, the corresponding squared
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Figure 3. Squared backward scattering coefficient at the upwave end of the perturbed region
|S(0)|2 versus the detuning K2/|β−nm|2, for the different fixed lengths of the undulating region |β−nm|L
indicated in the figure.

transmission coefficient at the same location exceeds 2, i.e. |T (Yj)|2 > 2. Therefore,
when the normalized effective detuning wavenumber K2/|β−nm|2 is supercritical but
less than 2, the scattered and transmitted wave amplitudes are both amplified at some
locations over an undulating region that allows perfect transmission (i.e. (3.16) is
satisfied). Similar amplification over the bars occurs in the solutions for supercritical
Bragg scattering of surface waves in constant depth, but was not mentioned by Mei
(1985).

Differences between subcritical and supercritical backscattering are illustrated by
the variation of |S(0)|2 as a function of the detuning K2/|β−nm|2 (figure 3). Below and
at cutoff (K2/|β−nm|2 6 1), |S(0)|2 rises to unity rapidly and monotonically as the length
of the perturbed region |β−nm|L increases, implying nearly complete backscatter unless
the undulating region is relatively short (e.g. |β−nm|L 6 1). Above cutoff, backscatter is
never complete and (at fixed |β−nm|L) |S(0)|2 oscillates and attenuates with increasing
detuning K2/|β−nm|2. The change in the amplitude variation over the undulating region
from exponential (figure 1) to oscillatory (figure 2) that occurs at the cutoff detuning
(i.e. K2 = |β−nm|2) is thus accompanied by a reduction in the energy backscattered from
the entire undulating region (figure 3).

3.1.2. Over a semi-infinite region

For subcritical detuning (K2 < |β−nm|2), the solution (3.7) for finite undulating regions
can be extended to a semi-infinite region by letting L→∞, yielding

T (Y ) = e−QY , S(Y ) = i(β−nm)∗e−QY /(Q− iK), 0 6 Y < +∞. (3.18)

The scattering over the semi-infinite undulating region is complete (i.e. |S(0)| = 1), and
the penetration distance (i.e. e-folding distance) of both the incident and backscattered
edge waves into the undulating region is

Q−1 =
[
|β−nm|

(
1−K2/|β−nm|2

)1/2
]−1

. (3.19)

Note that Q−1 > 1/|β−nm| and increases as K2/|β−nm|2 increases. For Bragg scattering
(i.e. n = m), the incident and scattered edge waves form a standing edge wave with
amplitude that decays exponentially with increasing distance (Y ) over the corrugated
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region

η0 = 2a0e
−QY ϕn(x) cos(ωt+ ΩT + φ/2) cos(kny + φ/2), (3.20)

where

φ = θ − π/2− arcsin(K/|β−nn|), (3.21)

and θ is the phase in the periodic depth perturbation

h1 = c0(x) + 2c1(x) cos(2kny + θ), (3.22)

with c1 real. The phase difference between the standing edge wave (3.20) and the
periodic perturbed depth (3.22) is

φ− θ = −π/2− arcsin(K/|β−nn|). (3.23)

For perfect tuning (K = 0), the phase difference (−π/2) indicates that standing wave
nodes and antinodes occur at midpoints between adjacent extrema of the perturbed
depth h1.

For supercritical detuning (K2 > |β−nm|2), the radiation condition that the backscat-
tered wave amplitude vanishes at Y = +∞ cannot be satisfied, and there are no
solutions wherein the backward travelling wave arises solely from scattering of the
incident wave. Instead, the general solutions over the semi-infinite undulating region

T (Y ) = C1e
iPY + C2e

−iPY , (3.24a)

S(Y ) = −C1(β
−
nm)∗eiPY /(P +K) + C2(β

−
nm)∗e−iPY /(P −K), (3.24b)

correspond to wave energy sources at Y = ±∞, and in general the amplitudes and
phases of both the incident and backward travelling waves vary periodically. There
are special cases (e.g. C1 = 1 and C2 = 0) where the phases of these two counter-
propagating waves vary over the corrugated region, but their amplitudes (|T (Y )| and
|S(Y )|) remain constant.

For critical detuning (K2 = |β−nm|2),
T (Y ) = 1, S(Y ) = −(β−nm)∗/K, 0 6 Y < +∞, (3.25)

which also can be found by letting L→∞ in (3.11). The amplitudes and phases of the
incoming and backward travelling waves are constant over the corrugated region. The
undulating bathymetry has no effect, other than to determine the phase differences
between the waves and the perturbed depth. When n = m, the incident and backward
travelling waves form a standing wave with phase difference relative to the perturbed
depth (3.22) of either π or 0, depending on whether the detuning K is positive or
negative. The standing edge wave nodes and antinodes thus occur at the extrema of
the depth perturbation.

Guza & Bowen (1981) showed that beach cusps with infinite extent can alter the
dispersion relation of standing edge waves with twice the cusp length. Their solution
for mode 0 is extended to mode n in Appendix B, and additional solutions for
two counter-propagating edge waves with the same mode number over an infinite
corrugated region are given.

3.2. Single-wave forward scattering

Single-wave forward scattering is mathematically simpler than backscattering because
(2.16) becomes an initial-value problem (in space) and admits only oscillatory solutions
irrespective of the magnitude of the detuning. Forward scattering from a finite-length
undulating region is easily obtained from the results for a semi-infinite region so a
semi-infinite region is considered first.
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3.2.1. Over a semi-infinite region

The forward scattered edge wave must have zero amplitude over the unperturbed
bathymetry

B0 = 0, Y 6 0. (3.26)

Solutions for A0 and B0 over the undulating region Y > 0, governed by (2.16) with
+ sign and satisfying the continuity boundary conditions at Y = 0, are

A0 = a0T (Y )ei[(αn+αm+Ω/Cgn+Ω/Cgm)Y /2−ΩT ], Y > 0, (3.27a)

B0 = a0(Cgn/Cgm)S(Y )ei[(αn+αm+Ω/Cgn+Ω/Cgm)Y /2−ΩT ], Y > 0, (3.27b)

where

T (Y ) = cosPY + iKP−1 sinPY , S(Y ) = i(β+
nm)∗P−1 sinPY , (3.28)

P =
[
K2 + |β+

nm|2
]1/2

(3.29)

(compare (3.29) with (3.14)), and K is the effective detuning wavenumber defined as

K =
(
αn − αm + Ω/Cgn − Ω/Cgm

)
/2 (3.30)

(compare (3.30) with (3.5)). The squared scattering and transmission coefficients,
|S(Y )|2 and |T (Y )|2, vary periodically in Y with wavenumber 2P and satisfy energy
conservation (from (2.20) with + sign)

|T (Y )|2 + |S(Y )|2 = 1. (3.31)

In contrast to backward scattering, when the forward scattered wave amplitude is
maximum, the transmitted wave amplitude at the same location is minimum, and vice
versa (contrast (3.31) with (3.6)). The squared forward scattering coefficient is

|S(Y )|2 = sin2 PY /[K2/|β+
nm|2 + 1]. (3.32)

With perfect tuning (K = 0), the energy exchange between mode n and m is complete
(i.e. |S(Y )|2 = 1) when |β+

nm|Y = π/2, 3π/2, etc. As the detuning K2/|β+
nm|2 increases,

the wavelength and maximum value of |S(Y )|2 gradually decrease (energy exchange
is partial).

3.2.2. Over a finite region

When the region of longshore undulations has finite length L, wave amplitudes are
spatially uniform downwave of the depth perturbation (Y > L). In the undulating
region 0 6 Y 6 L, S(Y ) and T (Y ) are still given by (3.28) so the forward scattering
coefficient of the entire region |S(L)| is given by (3.32) with Y = L (figure 4). At
exact resonance K = 0, forward scattering is complete (|S(L)| = 1) when |β+

nm|L =
(l−1/2)π(l = 1, 2, . . .), and transmission is complete (|S(L)| = 0) when |β+

nm|L = lπ. For
non-zero detuning (K 6= 0), transmission is perfect when PL = lπ, corresponding to

|β+
nm|L = lπ

[
K2/|β+

nm|2 + 1
]−1/2

, but forward scattering is never complete (i.e. |S(L)| <
1 for K 6= 0). The values of the local maxima of the squared forward scattering

coefficient |S(L)|2, i.e.
[
K2/|β+

nm|2 + 1
]−1

from (3.32), decrease as the detuningK2/|β+
nm|2

increases, similar to the decrease in the local maxima of the squared supercritical
backscattering coefficient |S(0)|2 with increasing detuning (compare figures 3 with 4
for K2/|β±nm|2 > 1).
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3.3. Multi-wave scattering

To find the analytic solutions for the multi-wave scattering involving mode-0 and
mode-1 edge waves, we further assume that the mean (y-averaged) profile does not
deviate from the plane beach, i.e. c0 = 0.

3.3.1. Over a finite region

The general solutions of the constant-coefficient equations (2.24) over the undulating
region 0 6 Y 6 L depend on the roots of the eigen equation[

σ2 − (σ̄2 + ∆1/2)/2
] [
σ2 − (σ̄2 − ∆1/2)/2

]
= 0, (3.33a)

where

σ̄2 = α̃2
0 + α̃2

1 + 2|β+
01|2 − |β−11|2, (3.33b)

∆ =
[
α̃2

0 − α̃2
1 + |β−11|2

]2
+ 4|β+

01|2
[
(α̃0 + α̃1)

2 − |β−11|2
]
, (3.33c)

and

α̃0 = Ω/Cg0 = 2k0Ω/ω, α̃1 = Ω/Cg1 = 2k0Ω/3ω, (3.33d, e)

which in turn depend on the frequency detuning of the incident wave Ω.

When

Ω2 = Ω2
1 =

9ω2

32k2
0

[
−(4|β+

01|2 + |β−11|2) + 2|β+
01|
(
4|β+

01|2 + 3|β−11|2
)1/2
]
, (3.34)

∆ = 0, and the eigen equation (3.33) has roots ±σ1 = ±σ̄/21/2 with double multiplicity.
The corresponding general solution for (2.24) can be written as

{A+
0 , A

−
0 , B

+
0 , B

−
0 }T = C1{eiσ1Y , Y eiσ1Y , e−iσ1Y , Y e−iσ1Y }Te−iΩT , (3.35)
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where C1 is a 4× 4 matrix and superscript T denotes matrix transpose. On the other
hand, when

Ω2 = Ω2
2 =

3ω2

8k2
0

[
2|β+

01|2 + 3|β−11|2 − |β−11|
(
12|β+

01|2 + 9|β−11|2
)1/2
]
, (3.36)

or

Ω2 = Ω2
3 =

3ω2

8k2
0

[
2|β+

01|2 + 3|β−11|2 + |β−11|
(
12|β+

01|2 + 9|β−11|2
)1/2
]
, (3.37)

(3.33) has roots ±σ̄ and 0 with double multiplicity. The corresponding general solution
for (2.24) can be expressed as

{A+
0 , A

−
0 , B

+
0 , B

−
0 }T = C2{eiσ̄Y , e−iσ̄Y , 1, Y }Te−iΩT , (3.38)

where C2 is a 4× 4 matrix.
When the frequency detuning Ω2 does not equal Ω2

1 , Ω2
2 , or Ω2

3 , (3.33) has four
distinct roots ±σ+ and ±σ−, where

σ2
± = (σ̄2 ± ∆1/2)/2, (3.39)

and the general solution for (2.24) is given by

{A+
0 , A

−
0 , B

+
0 , B

−
0 }T = C3{eiσ+Y , e−iσ+Y , eiσ−Y , e−iσ−Y }Te−iΩT , (3.40)

where C3 is a 4 × 4 matrix. For brevity, the lengthy expressions for the elements of
Cj(j = 1, 2, 3) are not given.

For the beach cusps and crescentic bar discussed in the next section, |Ω1| < |Ω2| <
|Ω3|. When 0 6 |Ω| < |Ω1|, σ+ and σ− are complex conjugates because ∆ < 0. When
|Ω| > |Ω1|, σ+ becomes real and increases with increasing |Ω|, whereas σ− is real only
when |Ω1| < |Ω| < |Ω2| and |Ω| > |Ω3|. Otherwise (i.e. when |Ω2| < |Ω| < |Ω3|) σ− is
pure imaginary.

For simplicity, consider a mode-0 or mode-1 incident edge wave propagating over
beach cusps with longshore wavelength λc = 3π/k0 and a λc-scaled exponential cross-
shore decay. The bathymetric perturbation εh1(x, y) = ace

−πx/λc cos(2πy/λc), where
ac is the cusp amplitude, is a special case of a more general cusp perturbation
discussed in §4 (corresponding to p = 1/3 and q = 0 in (4.1)). The solutions over
this particular topographic perturbation depend on the incident wave. Results for
an incident mode-0 edge wave are presented first, followed by results for a mode-1
incident wave. The ratio of mode-n edge wave energy flux to the incident wave flux at
the upwave edge of the perturbed region (Y = 0) is denoted as |Fn(Y )|2 if the wave is
forward propagating or |Bn(Y )|2 if the wave is backward propagating. The variations
of energy fluxes over cusped regions of different lengths for a perfectly tuned mode-0
incident wave are shown in figure 5. When |β+

01β
−
11|1/2L = 1 (figure 5a), the corrugated

region is long enough such that most of the mode-0 incident edge wave energy is
forward scattered to mode-1, but not long enough for significant backscattering of the
mode-1 wave (note that |β+

01| ≈ 2.7|β−11|). Backscattering is insignificant in this case of
a mode-0 incident wave over a moderately short scattering region, and the multi-wave
equations (2.24) can be approximated by single-wave forward scattering equations
(2.16). However, as the region length increases the fluxes of all the wave components
vary (figures 5b–5d). The maximum energy flux of the forward propagating mode
1 (|F1(Y /L)|2) decreases, whereas the maximum fluxes of the backward propagating
modes (|B0(Y /L)|2 and |B1(Y /L)|2) increase.

For a sufficiently long perturbed region, no energy reaches the downwave end of
the perturbed bathymetry (figure 5d). Over the perturbed bathymetry, the two mode-0
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Figure 5. Spatial variations of energy fluxes (——, |F0(Y /L)|2; − · −, |F1(Y /L)|2; · · · ·, |B0(Y /L)|2;
and - - -, |B1(Y /L)|2) of multi-wave solutions over cusped regions of different lengths:

|β+
01β
−
11|1/2L = 1.0 (a), 2.5 (b), 5.0 (c), and 10.0 (d). The tuning is perfect (Ω = 0) and the inci-

dent wave is mode 0.

edge waves have similar amplitudes and approximately form a standing edge wave,
as do the two mode-1 edge waves. Upwave of the periodic bathymetry (Y 6 0), the
mode-1 energy flux is very small. Thus, to an upwave observer the effect on an incident
mode-0 edge wave (with wavenumber k0) of multi-wave scattering over a long region
of periodic bathymetry with wavenumber 2k0/3 is nearly complete backscattering of
the incident wave into a wave with the same wavenumber. Except for a possible phase
difference, this is the same effect as Bragg scattering of the mode-0 incident wave by
an undulating region with wavenumber 2k0.
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Figure 6. Spatial variations of energy fluxes (——, |F0(Y /L)|2; − · −, |F1(Y /L)|2; · · · ·, |B0(Y /L)|2;
and - - -, |B1(Y /L)|2) of multi-wave solutions over beach cusps spanning a fixed length

|β+
01β
−
11|1/2L = 10.0, for different detuning k0|β+

01β
−
11|−1/2|Ω|/ω = 0.5 (a), 1.5 (b), and 2.5 (c). Zero

detuning is shown in figure 5(d).

Frequency detuning |Ω| has a strong effect on variations of the normalized energy
fluxes over a long beach cusp region, as shown in figure 6 for the detuning regions
|Ω1| < |Ω| < |Ω2|, |Ω2| < |Ω| < |Ω3|, and |Ω| > |Ω3| (note that for the particular beach
cusps considered here, k0|β+

01β
−
11|−1/2|Ω1|/ω = 0.221, k0|β+

01β
−
11|−1/2|Ω2|/ω = 1.023, and

k0|β+
01β
−
11|−1/2|Ω3|/ω = 1.944). When |Ω| > |Ω1| (all panels in figure 6), backscatter is

weak and the wave field over the perturbed depth is dominated by the incident mode-0
edge wave and the forward scattered mode-1 edge wave. This is in marked contrast
to the solutions for the same undulating region with no detuning (figure 5d), where
backscatter is important. In the region |Ω1| < |Ω| < |Ω2| (figure 6a), the detuning
suppresses backscattering but is not large enough to inhibit forward scattering, and
energy exchange between the forward modes is nearly complete. Note that the incident
wave amplitude is amplified at some locations inside the undulating region. In the
region |Ω2| < |Ω| < |Ω3| (figure 6b), a reduced portion of the incoming mode-0 energy
is forward scattered to mode-1, and both |F0(Y /L)|2 and |F1(Y /L)|2 oscillatorily
approach constants. In the region |Ω| > |Ω3| (figure 6c), the amplitudes of these two
forward propagating waves oscillate over the perturbed bathymetry. As the detuning
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further increases (not shown), both the magnitude and wavelength of the forward
amplitude oscillations decrease, indicating the weakening influence of the undulating
region.

The variations of normalized energy fluxes outside the undulating region |F0(L)|2,
|F1(L)|2, |B0(0)|2, and |B1(0)|2 as a function of normalized detuning are shown in
figure 7. (Recall that |F0(0)|2 = 1 by definition and that |F1(0)|2 = |B0(L)|2 =
|B1(L)|2 = 0 from the boundary conditions.) Over a moderately short undulating
region (figure 7a), the forward scattering to mode 1 that is nearly complete with
no detuning is strongly suppressed by increased detuning (i.e. |F1(L)|2 decreases
from approximate unity to near zero with increased detuning). Over long undulating
regions the strong backscatter into mode 0 with small detuning weakens with increased
detuning (i.e. |B0(0)|2 decreases from near unity in figures 7c and 7d). More of the
incident energy reaches the downwave region Y > L as mode-1 and/or as the original
mode-0 incident edge wave (|F1(L)|2 may become zero, see figure 7c, d). The maximum
fraction of energy flux of mode-1 edge wave backscattered to the upwave region is
less than about 25% (see the dashed lines in figure 7). For the largest detuning shown
in figures 7(c) and 7(d), resonant scattering is negligible to an observer downwave of
the perturbed bathymetry (i.e. |F0(L)|2 ≈ 1, |F1(L)|2 ≈ |B0(0)|2 ≈ |B1(0)|2 ≈ 0).

The above results for an incident mode-0 edge wave are now compared with
solutions for an incident mode-1 edge wave. Note that for single-wave scattering,
exchanging the mode numbers of the incident and scattered waves will not affect
the scattering and transmission coefficients, because β±nm = β±mn and the square of
the effective detuning wavenumber K2 remains the same (see (3.5) and (3.30)). For
example, suppose the resonance condition (2.8) is satisfied for backscattering of mode
0 and 1. The normalized forward and backward energy fluxes with a mode-0 incident
wave are identical to those with a mode-1 incident wave, except that in the former
case the forward (backward) energy flux pertains to mode 0 (1) and in the latter
case to mode 1 (0). This symmetry with respect to the mode numbers of the incident
and scattered waves does not hold for multi-wave scattering involving mode 0 and 1.
For example, although the variations of |F0(L)|2 and |B0(0)|2 with a mode-1 incident
wave are identical to those of |F1(L)|2 and |B1(0)|2 with a mode-0 incident wave,
respectively (cf. figure 8 with 7d), they are not identical over the entire undulating
region. Moreover, the variations of |F1(L)|2 and |B1(0)|2 with a mode-1 incident wave
differ significantly from those of |F0(L)|2 and |B0(0)|2 with a mode-0 incident wave,
respectively, when k0|β+

01β
−
11|−1/2|Ω|/ω > 0.221 (corresponding to |Ω| > |Ω1|), especially

in the region 1 < k0|β+
01β
−
11|−1/2|Ω|/ω < 2 (corresponding to |Ω2| < |Ω| < |Ω3|).

The multi-wave scattering results presented above are not very sensitive to the
particular assumed cross-shore variation of the depth perturbation. Quantitatively
similar results are obtained for beach cusps with a range of plausible p and q values
(in (4.1) discussed in §4). For bathymetry roughly resembling crescentic bars observed
at Duck (see next section), the variations of normalized energy fluxes with a mode-0
or mode-1 incident edge wave are similar to the corresponding results above for beach
cusps.

3.3.2. Over a semi-infinite region

For small detuning with 0 6 |Ω| < |Ω1|, σ+ = σ∗− = σr + iσi (σr and σi are positive
real numbers) and the solutions of (2.24) for a semi-infinite region simplify to

A+
0 =

a0

2σr

[
(σ− + α̃0)e

iσrY + (σ+ − α̃0)e
−iσrY

]
e−σiY−iΩT , (3.41a)
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Figure 7. Variations of energy fluxes at the edges of the undulating region Y = 0, L (——, |F0(L)|2;

− · −, |F1(L)|2; · · · ·, |B0(0)|2; and - - -, |B1(0)|2) versus the detuning k0|β+
01β
−
11|−1/2|Ω|/ω for different

region lengths |β+
01β
−
11|1/2L = 1.0 (a), 2.5 (b), 5.0 (c), and 10.0 (d). Mode 0 is incident on the cusps so

|F0(L)|2 = 1 corresponds to complete transmission.

A−0 = − a0(β
+
01)
∗

2σrβ
+
01β
−
11

{
σ− + α̃0

σ+ + α̃0

[
(σ+ − α̃0)(σ+ − α̃1)− |β+

01|2
]

eiσrY

− σ+ − α̃0

σ− − α̃0

[
(σ− + α̃0)(σ− + α̃1)− |β+

01|2
]

e−iσrY

}
e−σiY−iΩT , (3.41b)

B+
0 = i

a0

σrβ
+
01

Cg0

Cg1

(σ+ − α̃0)(σ− + α̃0) sin(σrY )e−σiY−iΩT , (3.41c)
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Figure 8. Variations of energy fluxes (——, |F1(L)|2; −·−, |F0(L)|2; · · · ·, |B1(0)|2; and - - -, |B0(0)|2)

versus the detuning k0|β+
01β
−
11|−1/2|Ω|/ω with fixed |β+

01β
−
11|1/2L = 10.0. Mode 1 is incident on the

cusps so |F1(L)|2 = 1 corresponds to complete transmission. The line types here are such that this
figure would be identical to figure 7(d) if the normalized energy fluxes were symmetric with respect
to mode-0 and mode-1 incident waves.

B−0 =
a0

2σrβ
+
01β
−
11

Cg0

Cg1

{
(σ− + α̃0)

[
(σ+ − α̃0)(σ+ − α̃1)− |β+

01|2
]

eiσrY

+ (σ+ − α̃0)
[
(σ− + α̃0)(σ− + α̃1)− |β+

01|2
]

e−iσrY
}

e−σiY−iΩT (3.41d)

for mode-0 incident waves, and

A+
0 = i

a0β
+
01

σr

Cg1

Cg0

sin(σrY )e−σiY−iΩT , (3.42a)

A−0 = −a0(β
+
01)
∗

2σrβ
−
11

Cg1

Cg0

{
(σ+ + α̃0)

−1
[
(σ+ − α̃0)(σ+ − α̃1)− |β+

01|2
]

eiσrY

+ (σ− − α̃0)
−1
[
(σ− + α̃0)(σ− + α̃1)− |β+

01|2
]

e−iσrY
}

e−σiY−iΩT , (3.42b)

B+
0 =

a0

2σr

[
(σ+ − α̃0)e

iσrY + (σ− + α̃0)e
−iσrY

]
e−σiY−iΩT , (3.42c)

B−0 =
a0

2σrβ
−
11

{[
(σ+ − α̃0)(σ+ − α̃1)− |β+

01|2
]

eiσrY

−
[
(σ− + α̃0)(σ− + α̃1)− |β+

01|2
]

e−iσrY
}

e−σiY−iΩT (3.42d)

for mode-1 incident edge waves (α̃0,1 and σ± are defined in (3.33d, e) and (3.39),
respectively). The amplitude of each wave oscillatorily attenuates as Y increases with
a decay rate (or e-folding scale) 1/σi, where

σ2
i = 1

4
[−
(
α̃2

0 + α̃2
1 + 2|β+

01|2 − |β−11|2
)

+ 2
(
α̃2

0α̃
2
1 − 2α̃0α̃1|β+

01|2 − α̃2
0|β−11|2 + |β+

01|4
)1/2

]. (3.43)

It can be shown that backscattering is complete (i.e. |B0(0)|2 + |B1(0)|2 = 1) with a
semi-infinite undulating region and weak detuning (|Ω| < |Ω1|). For perfect tuning
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Figure 9. Beach cusp profiles (4.1) along cross-shore sections y = 0,±λc,±2λc, . . . , for different
values of p and q.

(Ω = 0), two mode-0 edge waves form a standing edge wave, so do two mode-1 edge
waves (see figure 5d). The e-folding scale in this situation is 1/σi = 2/|β−11|, which
surprisingly does not depend on β+

01.

4. Scattering by beach cusps and crescentic bars
The scattering of an incident edge wave by longshore periodic bathymetry with

dimensions roughly similar to observed beach cusps and crescentic bars is now
considered. Coupling coefficients for cusps and crescentic bars are determined first,
and then used to show that the amplitudes of these features are large enough to cause
strong edge wave scattering, over a significant incident wave frequency bandwidth,
within a propagation distance of only O(10) topographic wavelengths.

4.1. Coupling coefficients for beach cusps

Cusp-like topographic variations are described as

εh1(x, y) = ac (1− qk0x) e−pk0x cos(2πy/λc), (4.1)

where ac and λc are the cusp amplitude and cusp wavelength, and p(> 0) and q(> 0)
are O(1) constants that alter the exponential offshore decay scale and structure of the
cusps (figure 9). With this form for cusps, there is no change in the mean (y-averaged)
depth profile (i.e. c0 = 0 in (2.5)). If c0 6= 0, detuning is altered, but not the coupling
coefficient. When q = 0, (4.1) is equivalent to the form used by Guza & Bowen (1981).
When q > 0, c1(x) changes sign; depth depressions are located offshore of the cusp
horns, and deltas are offshore of the cusp bays, as have been occasionally observed
(Guza & Inman 1975 and references therein).

For this particular topographic perturbation, the coupling coefficient β±nm is (from
(2.19))

β±nm(p, q) = k0n̄m̄

{
1− n̄m̄

∫ +∞

0

(1− qχ)
{[
L′n (2n̄χ) + L′n+1 (2n̄χ)

]
×
[
L′m (2m̄χ) + L′m+1 (2m̄χ)

]
± Ln (2n̄χ)Lm (2m̄χ)

}
e−(p+n̄+m̄)χdχ

}
, (4.2)
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B00 B01 M01 F02

f0 × 10 (Hz) 0.522 0.640 0.905 0.826
l/λc 4.1 5.9–9.0 10.8–22.5 13.7–27.9
|δf|/f0 0.034 0.015–0.023 0.003–0.006 0.031–0.063

Table 1. Low-mode edge wave scattering by beach cusps at Parramore Island. The cusp
dimensions are λc = 20 m, s = 0.07, and ac = 0.035 m (from Guza & Bowen 1981).

B00 B01 M01 F02

f0 × 10 (Hz) 0.604 0.739 1.046 0.954
l/λc 2.2 3.1–4.8 5.8–12.0 7.3–15.0
|δf|/f0 0.063 0.029–0.044 0.005–0.012 0.058–0.118

Table 2. Low-mode edge wave scattering by beach cusps at False Cape. The cusp dimensions are
λc = 21.4 m, s = 0.10, and ac = 0.1 m (from Guza & Bowen 1981).

where n̄ = (2n+ 1)−1, m̄ = (2m+ 1)−1, L′j(χ) = dLj(χ)/dχ, and the ordering parameter
ε = ack0/s is a measure of the ratio of the mean slope of the cusps to the slope of the
unperturbed beach. The integrand in (4.2), consisting of polynomials multiplied by
an exponential function, can be evaluated analytically using

∫ +∞
0

χje−µχdχ = j!/µj+1,
where j is a non-negative integer and µ > 0, e.g.

β−00 = k0, (4.3a)

β−01 =
k0

3

[
3p+ 2

3p+ 4
+

6q

(3p+ 4)2

]
, β−11 =

k0

9

[
9p2 + 4p+ 4/3

(3p+ 2)2
+

24pq

(3p+ 2)3

]
, (4.3b, c)

β+
01 =

k0

3

[
(3p+ 2)2

(3p+ 4)2
+

12q(3p+ 2)

(3p+ 4)3

]
, β+

02 =
k0

5

[
(5p+ 4)3

(5p+ 6)3
+

30q(5p+ 4)2

(5p+ 6)4

]
. (4.3d, e)

Note that β−00 is independent of the cusp shape parameters p and q, whereas
the other β±nm depend linearly on q. When q = 0, β±nm monotonically increases as p
increases and approaches a constant [(2n+ 1)(2m+ 1)]−1k0. The inclusion of the term
proportional to q increases the value of β±nm significantly when p is less than 1, but the
contribution from this term becomes less significant as p increases. The normalized
coupling coefficient β±nm/k0 decreases as the mode numbers n, m increase due to the
factor [(2n+ 1)(2m+ 1)]−1 (see (4.2)).

The cusp amplitude ac, wavelength λc, and beach slope s observed at Parramore
Island and False Cape are given in tables 1 and 2. The frequencies of exact resonance
f0 for single-wave mode-0 Bragg scattering (B00), (0, 1) backward scattering (B01),
(0, 2) forward scattering (F02), and (0, 1) multi-wave scattering (M01) are all in the
frequency range (0.05–0.10 Hz) of ocean swell (tables 1 and 2). Assume that the
shapes of cusps at Parramore Island and False Cape can be described by (4.1) with
π/2λc 6 pk0 6 5π/λc and 0 6 qk0 6 2π/λc (k0 = ω2/gs). From (4.3b–e), the minima

and maxima of β±01, β
−
11, and β+

02 over the corresponding parametric ranges are

0.2k0 6 β
−
01 6 0.307k0, 0.04k0 6 β

−
11 6 0.083k0, (4.4a, b)

0.103k0 6 β
+
01 6 0.227k0, 0.073k0 6 β

+
02 6 0.148k0. (4.4c, d)
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Figure 10. Duck bathymetry on 4 December 1996: (a) depth profiles along one cross-shore section
(y = 316 m) (· · · ·) and averaged over all cross-shore sections (——); (b) longshore depth variation
(∆h) from the mean depth (about 1.5 m) along one longshore section (x = 55 m) (circles indicate
the measurement locations).

Normalized (with respect to the cusp wavelength λc) e-folding distances l for single-
wave backward scattering B00, B01, l = 1/εQ (see (3.19)), and multi-wave scattering
M01, l = 1/εσi (see (3.43)), and the envelope wavelength for forward scattering F02,
l = π/εP (see (3.32)), assuming no frequency detuning and that cusps extend over
a large longshore distance, are shown in tables 1 and 2 (second row). At resonance,
single-wave backscattering is very strong and e-folding scales are generally less than
10λc. Multi-wave scattering and forward scattering are slightly weaker (the e-folding
scale and the envelope wavelength are O(10)λc). The frequency detuning |δf|/f0

shown in the tables corresponds to doubling these e-folding distances and reducing
the maximum forward scattering coefficient from 1 to 1/2 (see (3.32)). The relatively
narrow bandwidth for multi-wave scattering indicates that detuning more strongly
affects multi-wave scattering than single-wave scattering. Owing to uncertainty in
the estimates of p and q (Guza & Bowen 1981), a range of l/λc and |δf|/f0 values

(corresponding to the upper and lower bounds of β±01, β
−
11, and β+

02 given in (4.4)) are
given for B01, M01, and F02 (B00 is independent of p and q).

Over a propagation distance of O(10) cusp wavelengths most of the energy of
an incident plane wave (with frequency deviation from f0 less than |δf|) will be
scattered to edge waves propagating in either the same or opposite direction. In fact,
the predicted mode-0 single-wave backscattering is so strong (e.g. e-folding distance
of about 2.2λc at False Cape) that the slowly varying assumption of the theory is
probably violated.
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Figure 11. The mean depth profile (——) and profile (· · · ·) along cross-shore sections
y = jλc (j = 0,±1, . . .) of the crescentic sandbar given by (4.5) with s = 0.03, ac = 0.5 m,
b = 50 m, c = 0.0314 m−1, and λc = 250 m.

4.2. Coupling coefficients for crescentic sandbars

Crescentic sandbars have wavelengths (typically several 100 m, Lippmann & Holman
1990) longer than beach cusps, and therefore scatter lower-frequency edge waves than
cusps. Bathymetric surveys at Duck, NC spanning 2 km alongshore (figure 10) are
used to illustrate the potential effect of a field-scale crescentic bar on edge wave
propagation. The depth deviation (from the mean beach profile, figure 10a) varied
periodically with longshore wavelength about 250 m and amplitude about 0.5 m
(figure 10b).

A crescentic sandbar superposed on a uniform plane beach is represented as

h = sx+ εh1 = sx+ ac(2e)1/2c(x− b)e−[c(x−b)]2

cos(2πy/λc), (4.5)

where ac is the maximum deviation of the sandbar from the plane beach, b is the
cross-shore location of zero perturbation (note that h1 given by (4.5) is antisymmetric
about x = b), c controls the width of the sandbar about the centre, and λc is the
sandbar longshore wavelength. Using selected values of these parameters the depth
deviation from the plane beach given in (4.5) crudely resembles the deviation of the
Duck bathymetry from the mean Duck profile (compare figure 11 with figure 10a).
The shape of εh1 given in (4.5) is also close to that of the resonant Fourier component
c1(x) cos(2πy/λc) of a symmetric ‘hump’ sandbar wiggling between x = b − d and
x = b + d (e.g. εh1(x, y) = acG

(
c[x− b+ d cos(2πy/λc)]

)
with G(x) = 1/(1 + x2),

sech(x), or exp(−x2)).

The coupling coefficient β±nm corresponding to the sandbar (4.5) is

β±nm(b̃, c̃) = −(2e)1/2k0c̃e
−b̃2 c̃2

n̄m̄

{
b̃+ n̄m̄

∫ +∞

0

(χ− b̃)
{[
L′n (2n̄χ) + L′n+1 (2n̄χ)

]
×
[
L′m (2m̄χ) + L′m+1 (2m̄χ)

]
± Ln (2n̄χ)Lm (2m̄χ)

}
e−c̃

2χ2+(2b̃c̃2−n̄−m̄)χdχ

}
, (4.6)

where b̃ = bk0, c̃ = c/k0, n̄ = (2n+ 1)−1, m̄ = (2m+ 1)−1, and the ordering parameter
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ε is again ack0/s. The integral in (4.6) can be evaluated in terms of the error function

erf(q) = 2π−1/2
∫ q

0
e−χ

2

dχ, e.g.

β−00 = −(2e)1/2k0b̃c̃e
−b̃2 c̃2

, (4.7a)

β−01 =
β−00

3

{
1 +

1

3b̃c̃2

[
1− 2π1/2

3c̃
eτ

2
1 [1 + erf(τ1)]

]}
, (4.7b)

β−11 =
β−00

9

{
1 +

4

9bc̃2

[
1 +

1

9c̃2
− π1/2

c̃

(
1

2
− b̃

9
+

1

27c̃2

)
eτ

2
2 [1 + erf(τ2)]

]}
, (4.7c)

β+
01 =

β−00

3

{
1 +

2

3b̃c̃2

[
1 +

2

9c̃2
− π1/2

c̃

(
5

6
− 2b̃

9
+

4

27c̃2

)
eτ

2
1 [1 + erf(τ1)]

]}
, (4.7d)

β+
02 =

β−00

5

{
1 +

1

25b̃c̃4

[
4 +

18

53c̃2
+ 15c̃2 − 6b̃

25
− π1/2

c̃

(
63

25
+

54

54c̃2
+ 12c̃2

− 36b̃

53
− 4b̃c̃2 +

6

25
b̃2c̃2

)
eτ

2
3 [1 + erf(τ3)]

]}
, (4.7e)

where

τ1 = b̃c̃− 2/3c̃, τ2 = b̃c̃− 1/3c̃, τ3 = b̃c̃− 3/5c̃. (4.8)

Figure 12 shows β−00, β
±
01, β

−
11, and β+

02 (normalized by k0) as a function of b̃ for fixed
c̃ = 21/2 (at Duck c̃ = 2.50, 1.67, 1.00, and 0.83 for B00, B01, F02, and M01, respectively).

For different values of c̃, due to the factor e−b̃
2 c̃2

, the shapes of these curves remain
almost the same with an inversely proportional stretching (compressing) of the b̃-axis.
The maximum is achieved near b̃ = (2c̃2)−1/2, corresponding to the situation where the
sandbar has the maximum depth perturbation at the shoreline x = 0. The coupling
coefficient exponentially decays for large b̃ (i.e. a sandbar far from the shoreline has
no effect on edge wave propagation) and also decays as b̃ decreases (when b̃ = b = 0,
the depth perturbation at the shoreline vanishes). The maximum value of |β±nm|/k0

decreases as n and m increase, again due to the factor [(2n+ 1)(2m+ 1)]−1 in (4.6).
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B00 B01 M01 F02

f0 × 10 (Hz) 0.097 0.118 0.168 0.153
l/λc 4.9 14.5 21.0 38.8
|δf|/f0 0.028 0.010 0.003 0.022

Table 3. Low-mode edge wave scattering by an semi-infinitely long field of crescentic sandbars.
The sandbar dimensions in (4.5) are s = 0.03, ac = 0.5 m, b = 50 m, c = 0.0314 m−1, and
λc = 250 m.

For the crescentic bar shape (4.5) with observation-based parameter values (fig-
ure 11), the values of low-mode coupling coefficients normalized by k0 are: β−00/k0 =
−0.3102, β−01/k0 = −0.0466, β−11/k0 = 0.0161, β+

01/k0 = 0.0468, and β+
02/k0 = 0.0197.

Table 3, corresponding to tables 1 and 2, gives the infragravity wave frequencies (f0)
for resonant scattering, normalized e-folding distances (for B00, B01, and M01) (l/λc)
and envelope wavelength (for F02) (l/λc) with perfect tuning, and the frequency detun-
ing (|δf|/f0) to double these e-folding lengths and reduce the envelope amplitude by
half. Although the resonant frequencies for scattering by crescentic bars (table 3) are
roughly a factor of 5 lower than the corresponding resonant frequencies for scattering
by cusps (tables 1 and 2), their normalized e-folding and detuning values are similar.

4.3. Backscattering of waves with finite bandwidth

Here we estimate the fraction of an incident edge wave spectrum with finite bandwidth
that is backscattered by a finite number of periodic cusps and crescentic bars. The
incident edge wave spectral level P (f) is assumed constant over [f0 − ∆f, f0 + ∆f],
where f0 is the exactly resonant frequency. The cusp topography is given by (4.1) with
pk0 = π/λc and q = 0, and the cusp wavelength, cusp amplitude, and mean beach
slope by the Parramore observations (table 1). The crescentic bar parameters are based
on (4.5) and the Duck observations (table 3). Two different lengths of undulating
region, 20 and 40 wavelengths (λc) of the rhythmic topography, are considered. The
total frequency-integrated backward scattering coefficient at Y = 0, the upwave end
of the perturbed bathymetry, is defined as

|St(∆f)|2 =

∫ f0+∆f

f0−∆f

P (f)|S(f)|2df
/∫ f0+∆f

f0−∆f

P (f)df, (4.9)

where |S(f)|2 is the total squared scattering coefficient at Y = 0 corresponding
to an incident edge wave with a near-resonant, monochromatic frequency f. For
single-wave backscattering, |S(f)|2 is given by (3.9), (3.12), or (3.15), depending on
whether the detuning is subcritical, critical, or supercritical. For (0, 1) multi-wave
scattering, |S(f)|2 = |B0(0)|2 + |B1(0)|2 is the sum of the normalized mode-0 and
mode-1 backscattered fluxes. Numerical integration of (4.9) (note that P (f) drops out
of (4.9) since it is assumed constant over [f0−∆f, f0 + ∆f]) yields |St|2, the fraction of
the incident wave energy that is backscattered, as a function of the spectral bandwidth
∆f about the resonant frequency f0. The same procedure can be used to find the total
band-integrated forward scattering coefficient. Results corresponding to (0, 0), (0, 1),
(0, 2), and (1, 2) single-wave backscattering and (0, 1) multi-wave scattering (with a
mode-1 incident edge wave) for the Parramore beach cusps and the Duck crescentic
bar are shown in figures 13 and 14. Note that |St(∆f)|2 at f = f0±∆f, where f is the
frequency variable in the figures, is the backscattered fraction of a spectrum that is
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Figure 14. Same as figure 13, but for the crescentic bar given by (4.5) and table 3.

white between f0−∆f and f0 +∆f, with f0 the frequency of exact resonance indicated
by vertical lines.

For single-wave backscattering, the maximum bandwidth considered in figures 13
and 14 is (∆f)max = 5∆fc, where ∆fc = εf0|β−nm|/kt is the critical bandwidth within
which the detuning is subcritical. Note that ∆fc = 2|δf|/

√
3, where |δf| is the detuning

frequency (given in tables 1–3) needed to double the e-folding scale on a semi-infinite
undulating patch. Within the critical bandwidth, detuning is weak and backscatter-
ing is strong (also see figure 3), so the band-integrated scattering coefficient |St|2 is
insensitive to the variation of the frequency bandwidth ∆f (figures 13 and 14). As the
frequency bandwidth of the incident wave increases beyond critical, backscattering
is much weaker (figure 3) and |St|2 decays rapidly. The scattering coefficient |St|2 is
insensitive to the length L of the perturbed region when ∆f > ∆fc, but within the
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critical bandwidth (∆f < ∆fc), |St|2 increases noticeably as L increases (from 20λc to
40λc) before reaching 1 (complete scattering). For the (0, 1) multi-wave scattering, the
maximum bandwidth considered in figures 13 and 14 is (∆f)max = 5εf0|β−11|/kt. As
the bandwidth ∆f increases, |St|2 first rapidly decreases, then increases, and finally
decreases again (consistent with the variation of |B1(0)|2 with detuning in figure 8).
Strong backscattering (|St|2 > 0.5) occurs only for incident waves with a relatively
narrow bandwidth propagating over a corrugated region longer than 20 topographic
wavelengths.

For the Parramore beach cusps (figure 13), the regions of significant (|St|2 > 0.3)
scattering centred at the resonant frequencies f0 for (0, 0), (0, 1), and (0, 2) backscatter-
ing overlap. Thus, more than 30% of the energy of incident mode-0 edge waves, with a
white spectrum spanning the frequency range of the overlapping resonances (roughly
0.045–0.07 Hz), is theoretically backscattered. Similarly, significant backscattering by
the Parramore cusps is predicted for mode-1 incident edge waves in the frequency
range approximately 0.085–0.105 Hz (figure 13), and by the Duck crescentic bar for
infragravity edge waves (e.g. mode-0 edge waves in 0.008–0.012 Hz and mode-1 edge
waves in 0.016–0.02 Hz) (figure 14). In these cases of overlapping resonances, the
present theory should be modified to allow simultaneous energy transfer among sev-
eral waves involved. For example at Parramore beach, the amplitudes of a 0.066 Hz,
mode-0 incident wave, and mode-1 and mode-2 backscattered edge waves should be
all coupled. The resulting equations are similar to the multi-wave scattering equations
(2.24), but are a generalization in that the resonant frequencies of the simultaneously
occurring resonances need not coincide and can differ by a small amount.

5. Discussion
5.1. Scattering by bathymetry with finite bandwidth

The total scattering coefficient for an edge wave with finite bandwidth propagating
over bathymetry with a single wavenumber was obtained through linear superposi-
tion (see (4.9)) of the results for a monochromatic wave given in §3. This is possible
because each (assumed) linear wave component independently interacts with the per-
turbed bottom. However, the total scattering coefficient for a monochromatic wave
propagating over a perturbed depth with finite bandwidth cannot be obtained by
superposition, because (near resonance) the scattering coefficients are not linearly
proportional to the amplitude of the topographic undulations c1 (although the cou-
pling coefficient β±nm (2.19) depends linearly on c1, the scattering coefficients, e.g.
(3.7), are not linear functions of β±nm). Scattering by all bottom components must be
considered simultaneously.

To model the scattering of a monochromatic incident wave by bathymetry with
a near-resonant bandwidth [kt − εK̃, kt + εK̃] (K̃ is an O(kt) constant), divide the
bathymetric wavenumber spectrum PB(k; x) in the near-resonant bandwidth into 2J
subintervals with resolution ∆k = εK̃/J . Express the perturbed depth as a slowly
modulated sinusoidal perturbation

h1 =

j=J∑
j=−J

bj(x) cos
[
(kt + j∆k)y + φj

]
= 1

2
eikty

j=J∑
j=−J

bj(x)ei(jK̃Y /J+φj ) + ∗ = cB(x, Y )eikty + ∗, (5.1)
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where bj = {2PB(kt + j∆k; x)∆k}1/2, cB(x, Y ) = 1
2

∑j=J
j=−J bj(x)ei(jK̃Y /J+φj ) is complex,

and φj are phases. Replacing c1 with cB in (2.19) and substituting the resulting
coupling coefficient into (2.16) or (2.24) yields coupled variable-coefficient equations
for single-wave or multi-wave scattering of a monochromatic wave propagating over a
perturbed bed with a near-resonant bandwidth and fixed phases φj . If the bathymetry
is assumed to have random rather than deterministic phases, the results of many phase
realizations can be averaged together. Development of a theory for the scattering of
a spectrum of edge waves by a spectrum of bathymetric undulations is beyond the
scope of the present work.

5.2. Morphology formation

Consider single-wave scattering over pre-existing longshore periodic bathymetry. The-
oretically, the incident and phase-locked scattered edge waves produce a longshore
periodic steady drift velocity (Bowen & Inman 1971; Holman & Bowen 1982). The
longshore wavenumber of the drift velocity coincides with the wavenumber of the
existing perturbed topography. Consequently, the sediment transport driven by the
drift velocity may alter the amplitude of the existing longshore periodic topogra-
phy and/or extend upwave the spatial extent of the rhythmic morphology if it has
an appropriate phase relation to the pre-existing topography. For perfect tuning
(K = 0) and a sufficiently long undulating region, the phase difference (−π/2) in
(3.21) indicates that nodes and antinodes of standing waves formed by backscattering
occur at midpoints between adjacent extrema of the perturbed depth h1. However,
models for morphology formation suggest that extrema of the morphology form at
standing edge wave nodes and antinodes. Further work is needed to determine if a
pre-existing morphology is reinforced, eroded, or moved by standing waves formed
by backscattering.

If the feedback between the resonantly scattered waves and the morphology is
constructive, then backscattering of waves with the same wavenumber as the incident
waves provides a mechanism for forming a field of rhythmic shoreline parallel features
(e.g. cusps and regular crescentic bars). Scattering of phase-coupled edge waves
with different wavenumbers may result in oblique sandbars welded to the shoreline
(Holman & Bowen 1982). For multi-wave scattering, the interaction of incident and
phases-locked scattered (more than one) edge waves may produce ‘bars, bumps, and
holes’ with more complex shapes (Holman & Bowen 1982).

6. Summary
Resonant scattering of progressive low-mode edge waves by longshore periodic

topography is investigated theoretically using a multiple-scale expansion of the lin-
ear shallow water equations. In ‘single-wave scattering’, an incident edge wave is
resonantly forward or backward scattered by the periodic topography into a single
additional progressive edge wave of the same frequency. Backscattering into an edge
wave with the same mode number (i.e. longshore wavenumber) as the incident edge
wave, the analogue of Bragg scattering of surface waves in constant depth, is a special
case. In ‘multi-wave scattering’, simultaneous forward and backward resonant scat-
tering results in several (rather than only one) new progressive edge waves. Coupled
evolution equations for the slowly varying amplitudes of incident and scattered edge
waves show that resonant scattering depends on both the longshore wavenumber and
cross-shore structure of the perturbed depth and of the incident and scattered waves.
For single-wave backward scattering with small (subcritical) detuning from exact
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resonance, the incident and backscattered wave amplitudes both exponentially decay
over the undulating bathymetry, and backscattering is nearly complete over a suffi-
ciently long undulating region (figures 1 and 3). On the other hand, when the detuning
is relatively large (supercritical), the wave amplitudes oscillate over the corrugated
region (figure 2). Although backscattering is incomplete with supercritical detuning
(figure 3), in some circumstances the incident and backscattered wave amplitudes
are significantly amplified at some locations within the undulating region (figure 2).
For single-wave forward scattering, the amplitudes of both waves oscillate over the
perturbed depth irrespective of the magnitude of the detuning (see (3.32)). Increasing
detuning reduces the magnitude and wavelength of the amplitude oscillations. For
the special case of multi-wave scattering involving mode-0 and mode-1 edge waves
considered here, the variations of the incident and scattered wave amplitudes over the
perturbed bathymetry are complex and strongly depend on the frequency detuning
(figures 5 and 6). With small detuning, most of the incident wave energy is reflected
from a long undulating region (figures 7d and 8).

These results are used to show that longshore periodic bathymetry roughly resem-
bling observed beach cusps and crescentic bars can scatter significant amounts of
low-mode edge wave energy (most of the energy of a monochromatic incident edge
wave at the resonant frequency will be scattered over a distance of O(10) topographic
wavelengths). The width of the frequency band (about the resonant frequency) that
is significantly scattered is substantial. For example, well developed beach cusps mea-
sured at one ocean beach are predicted to strongly backscatter mode-0 edge waves in
a frequency band 0.045–0.07 Hz that includes much of the frequency range of ocean
swell (figure 13).

This research was supported by the Mellon Foundation and the Office of Naval
Research (Coastal Dynamics). We thank the staff of the US Army Corps of Engineers
Field Research Facility for providing the crescentic sandbar profiles at Duck, NC.

Appendix A. Effect of a slowly varying slope on single-wave resonant
scattering

The case where the slope of the unperturbed beach s varies slowly in the longshore
direction is examined for single-wave scattering. According to the dispersion relation
(2.9), the wavenumbers (kn and km) and group velocities (Cgn and Cgm) also vary slowly
in the longshore direction. To enable analytic results, perfect tuning is assumed, i.e.
the mean (y-averaged) profile does not deviate from the plane beach (c0 = 0) and
frequency detuning vanishes everywhere (Ω = 0). In other words, it is assumed that
the wavenumber of the bathymetry varies alongshore so that (2.8) is satisfied and
exact resonance is maintained as the mean beach slope s and edge wave wavenumbers
change. In this case, (2.16) for single-wave scattering simplifies to

ĀY = iβ±nmB̄, ±B̄Y = i(β±nm)∗Ā, (A 1)

where

Ā = CgnA0, B̄ = CgmB0. (A 2)

Considering a finite undulating region 0 6 Y 6 L, assuming c1 = c1(k0x) (i.e. the
cross-shore shape of the rhythmic topography scales with the evolving topographic
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wavenumber, as in the case in (4.1)), and (for analytic convenience) letting the slope
vary as

s = s0(1 + s1Y )1/3, 0 6 Y 6 L, (A 3)

where s0(> 0) and s1(> −L−1) are constants, yields (see (2.19))

β±nm(Y ) = β±nm(0)/(1 + s1Y ), 0 6 Y 6 L. (A 4)

Combining the equations in (A 1) gives

(1 + s1Y )2ĀY Y + s1(1 + s1Y )ĀY ± |β±nm(0)|2Ā = 0, 0 6 Y 6 L. (A 5)

For backward resonant scattering, the wave fields over the corrugated region are
given by

A0 = a0

[
Cgn(0)/Cgn(Y )

]
T (Y ), B0 = a0

[
Cgn(0)/Cgm(Y )

]
S(Y ), 0 6 Y 6 L, (A 6)

with

T (Y ) =
(1 + s1Y )|γ

−
nm| + (1 + s1L)2|γ−nm|(1 + s1Y )−|γ

−
nm|

1 + (1 + s1L)2|γ−nm|
, (A 7a)

S(Y ) = −i|γ−nm|
(1 + s1Y )|γ

−
nm| − (1 + s1L)2|γ−nm|(1 + s1Y )−|γ

−
nm|

γ−nm
[
1 + (1 + s1L)2|γ−nm|

] , (A 7b)

where a0 is the incident wave amplitude at Y = 0 and γ−nm = β−nm(0)/s1. For forward
resonant scattering, the wave fields over the undulating region are given by (A 6) with

T (Y ) = cos
[
|γ+
nm| ln(1 + s1Y )

]
, S(Y ) = i(γ+

nm)−1|γ+
nm| sin

[
|γ+
nm| ln(1 + s1Y )

]
, (A 8)

where γ+
nm = β+

nm(0)/s1. As s1 → 0, T (Y ) and S(Y ) in (A 7) and (A 8) approach (3.10)
and (3.28) with K = 0 for constant slope, respectively.

Figure 15 shows the dependence of the squared backscattering coefficient |S(0)|2
(A 7b) on |β−nm(0)|L and s1L (note that the relative change of slope over the entire
undulating region [0, L] is [(1 + s1L)1/3 − 1]). For fixed |β−nm(0)|L, |S(0)|2 decreases
with increasing s1L. For fixed s1L, |S(0)|2 monotonically increases with increasing
|β−nm(0)|L, and approaches 1 faster (more slowly) for decreasing (increasing) slope than
for constant slope. Thus, over a fixed distance L, more wave energy is backscattered
due to the increase of the coupling coefficient (A 4) when the mean slope in the
undulating region decreases, whereas less energy is backscattered due to the decrease
of the coupling coefficient (A 4) when the slope increases. Note that although the group
velocities Cgn and Cgm also alter over a slowly varying slope, they will not affect the
scattering and transmission coefficients (see (A 1), and note that |Ā|2 = a2

0C
2
gn(0)|T |2

and |B̄|2 = a2
0C

2
gn(0)|S |2).

The forward scattering coefficient

|S(Y )|2 = sin2

[
|β+
nm(0)|Y ln(1 + s1Y )

|s1|Y

]
, 0 6 Y 6 L, (A 9)

oscillates between 0 and 1 because perfect tuning is maintained, but the envelope
wavenumber varies (compare (A 9) with (3.32) at K = 0). The envelope wavenumber
decreases as the slope increases (s1 > 0), and increases as the slope decreases (s1 < 0).
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Figure 15. The effect of the slowly varying slope (A 3) on the squared backward scattering
coefficient at Y = 0. For —— (- - -) refer to the bottom (top) of the figure for abscissa.

Note that for backscattering, if the frequency detuning is non-zero, i.e. Ω 6= 0, the
corresponding effective detuning wavenumber can be written as |K|2 = (Ω/Cgn +
Ω/Cgm)2/4 = |K(0)|2/(1+s1Y )2/3. The ratio |K|2/|β−nm|2 = (1+s1Y )4/3|K(0)|2/|β−nm(0)|2
increases (decreases) as the slope increases (decreases) over the corrugated region
[0, L]. Therefore, an incident wave that is subcritical (supercritical) entering an undu-
lating region with increasing (decreasing) slope, may cross the critical detuning within
the undulating region and becomes supercritical (subcritical), dramatically chang-
ing the behaviour of the wave field. Numerical solutions of the variable-coefficient
coupled equations (2.16) are straightforward but are not pursued here.

Appendix B. Counter-propagating edge waves over an infinite
undulating region

Consider two counter-propagating edge waves with the same mode number n
propagating over an infinitely long region of perturbations with wavenumber kt.
Multi-wave cases are excluded so n 6= 1, 4, etc. In this situation, there is no spatial
variation in wave amplitudes so ∂Y = 0 in (2.16), and the corresponding O(ε0) free
surface displacement (2.10) is

η0 = ϕn
[
C1e

i(αn+|β−nn|)CgnT + C2e
i(αn−|β−nn|)CgnT

]
ei(kny−ωt)

+ ϕne
−iθ
[
C1e

i(αn+|β−nn|)CgnT − C2e
i(αn−|β−nn|)CgnT

]
ei(−kny−ωt) + ∗, (B 1)

where C1 and C2 are constants, θ is the phase in the periodic depth perturbation
(3.22), and ω = [gs(n+ 1/2)kt]

1/2 and kn = kt/2 are the resonant edge wave frequency
and wavenumber, respectively. Two standing edge wave solutions,

η0 = a0ϕn cos[ωt− (αn + |β−nn|)CgnT − θ0] cos(kny + θ/2), (B 2)

η0 = a0ϕn cos[ωt− (αn − |β−nn|)CgnT − θ0] sin(kny + θ/2), (B 3)
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where a0 is the amplitude and θ0 is an arbitrary time phase constant, are found by
setting C2 = 0 and C1 = 0 (not at the same time) in (B 1), respectively (the nodes
and antinodes in both standing waves occur at the extrema of the perturbed depth
(3.22)). The perturbed depth alters the dispersion relation of the standing edge waves
with a small frequency shift

Ω = −(αn ± |β−nn|)Cgn

= − g

2Cgn

∫ +∞

0

{[
(c0ϕnx)x − k2

nc0ϕn
]
±
[
(c1ϕnx)x + k2

nc1ϕn
]}
ϕndx, (B 4)

where + and − signs correspond to (B 2) and (B 3), respectively. The small change in
the mean depth c0 has the same effect on the dispersion relation for both standing
edge waves, whereas the periodic perturbation 2c1 cos(2kny + θ) has opposite effects.
When n = 0, ϕ0 = e−k0x, (B 4) with + sign becomes

Ω =
gk2

0

ω

∫ +∞

0

c0xe
−2k0xdx+

gk2
0

ω

∫ +∞

0

(c1x − 2k0c1) e−2k0xdx, (B 5)

which agrees with the result given by Guza & Bowen (1981) for mode-0 standing
edge waves (B 2).

Other interesting solutions are found by setting C2 = C1 = 1
4
a0e

iθ0 and −C2 = C1 =
1
4
a0e

iθ0 in (B 1), resulting in

η0 = a0ϕn

[
cos(|β−nn|CgnT ) cos(kny − ωt+ αnCgnT + θ0)

+ sin(|β−nn|CgnT ) sin(kny + ωt− αnCgnT + θ − θ0)
]
, (B 6)

η0 = a0ϕn

[
cos(|β−nn|CgnT ) cos(kny + ωt− αnCgnT + θ − θ0)

− sin(|β−nn|CgnT ) sin(kny − ωt+ αnCgnT + θ0)
]
, (B 7)

respectively. Each solution describes two spatially uniform, counter-propagating edge
waves with temporally modulated wave amplitudes. The period of the slow energy
transfer between the travelling waves is

2π
(
ε|β−nn|Cgn

)−1
= 2π

{
ε
g

2Cgn

∫ +∞

0

[
(c1ϕnx)x + k2

nc1ϕn
]
ϕndx

}−1

. (B 8)

Note that energy is conserved (i.e. (2.20) is satisfied). At some times, the oppositely
travelling waves have equal amplitude and form a standing edge wave. At other times,
the amplitude of one wave vanishes and the wave field is purely progressive. The small
change in the mean depth c0 alters the dispersion relation of both travelling waves
but does not affect the wave amplitudes. The undulating bathymetry 2c1 cos(2kny+θ)
does not affect the dispersion relation.

With no change in the mean bathymetry (c0 = 0), the above solutions for the
spatially homogeneous infinitely long undulating bathymetry correspond to changes
in the dispersion relation and temporally constant amplitude ((B 2) and (B 3)) or no
changes in the dispersion relation and temporally varying amplitudes ((B 6) and (B 7)).
There are no spatially varying solutions. However, standing edge waves with spatially
varying amplitudes exist when the perturbed depth (3.22) is periodic in the region
|Y | > W but zero in the region between the undulations |Y | 6 W . The frequency
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detuning Ω must be subcritical but non-zero, and the width W must satisfy

W = [(2l + 1)π− 2δ]Cgn/4Ω, δ = arcsin(K/|β−nn|), (B 9)

where K = αn + Ω/Cgn, and l is a non-negative integer. When these conditions are
satisfied, the standing edge wave solution is

η0 =



a0ϕne
−Q(Y−W ) cos[ωt+ ΩT + θ/2− (l + 1)π/2]

× cos(kny − δ/2 + θ/2− π/4), Y >W

a0ϕn cos[ωt+ ΩT + θ/2− (l + 1)π/2]

× cos
[
kny + Ω/Cgn(Y −W )− δ/2 + θ/2− π/4

]
, |Y | 6W,

a0ϕne
Q(Y+W ) cos[ωt+ ΩT + θ/2 + (l + 1)π/2]

× cos(kny + δ/2 + θ/2 + π/4), Y 6 −W,

(B 10)

where Q =
[
|β−nn|2 −K2

]1/2
. The standing wave amplitude is constant over the unper-

turbed depth section and decays exponentially over the adjacent regions of undulating
bathymetry.
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